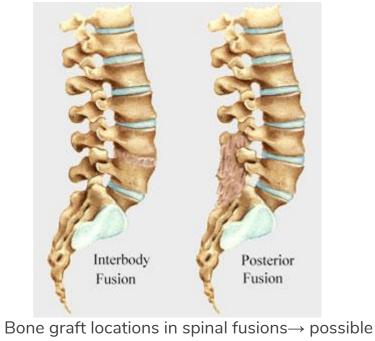
SmartStim: Preliminary Report


Presenter: Natalie Orr Group: Natalie Ng, Natalie Orr, Nathan Schmetter Client: Dr. Matthew MacEwan Washington University in St. Louis

What is it?

- Fusion procedure complication
- Fractured bones do not fuse
- Bone graft failure

What causes this condition?

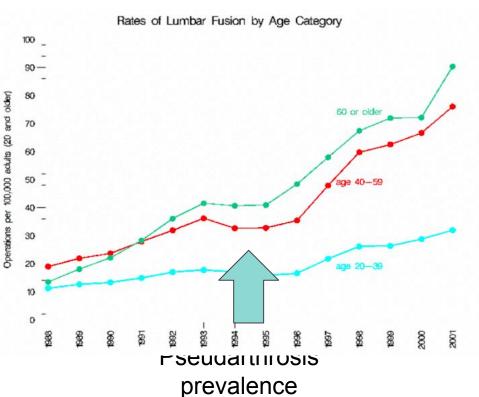
- Lack of bone growth
 - Influenced by many factors

pseudarthrosis sites

Why is it harmful/detrimental?

- Severe chronic pain
- Spinal instability
- Second surgery
- National monetary impact

	FBSS	Rheumatoic	l arthritis
Work disability rate	78%	50%	
Disability Oswestry Disability Scale ^a (mean)	56.4	27	
Health-related quality of life EQ-5D index (mean) Short-Form 36 domains (mean)	0.16	0.42 to 0.752	2
Physical functioning	23.4	62.3	Note: lov
Role – physical	5.1	49.0	values
Bodily pain	16.3	58.0	indicate
General health	45.7	52.1	greater disability
Vitality	31.2	52.2	rating
Social functioning	35.2	70.3	lating
Role – emotional	36.4	72.3	
Mental health	52.7	69.2	

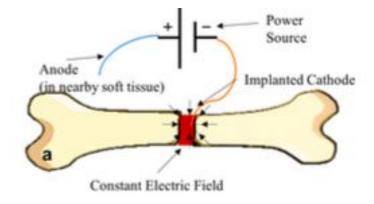

How often does it occur?

- Large variability
- ✤ ~9-18% spinal fusions
- ✤ ~2-12% long-bone fusions

Is it pervasive?

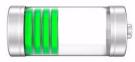
- ✤ >400,000 annual spinal fusions
 - > 137% increase 1998-2008
- ✤ ~40,000 long-bone fusions

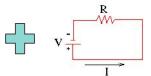
Fusion operations



Solution: SmartStim

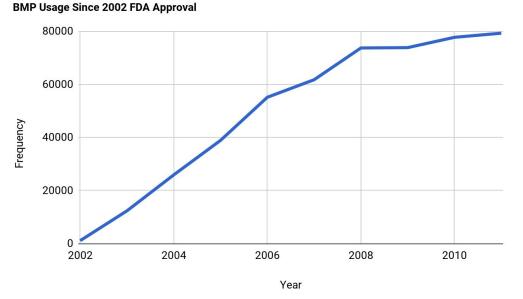
How would SmartStim combat pseudarthrosis?


 $\overline{}$



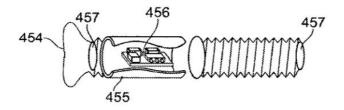
Product Market

- No existing solutions like SmartStim
- Project scope:
 - Biocompatible power supply
 - > Biocompatible microcontroller
 - Resorbable, steady current output circuit
 - Mechanical attachment to
 OsteoVantage pedicle screw
- Demand will increase as fusions increase
- Target market = orthopedic and neuro surgeons



SmartStim

Existing Solutions: BMP


- Only current precautionary measure
 - Gold standard
 - Increasing usage
- Costly
 - > \$4,000-%6,000 per treatment
 - > 11-41% hospital charge increase
- Poorly controlled in space/time

Adapted from Source 9


Existing Solutions: Ultrasound Stimulation

- Circuit within larger screw
- Broad stimulating application
- Largely focuses on signal transducer
- Patent only, not on market

Existing Solutions: Biocompatible Power

- Dissolvable silk battery
- Electrolyte soaked, conductive silk
 between electrode plates
- ✤ 0.87 V for 45 minutes
- Duration proportional to silk layering?

Existing Solutions: Biocompatible Microcontroller

- No current solution
- Unpublished paper for wireless, programmable, two-channel nerve stimulator
- Altered output frequency
- No two-way communication
- Inaccurate current output control

Existing Solutions: Resorbable Stimulating Circuitry

- No current solution
- Client has utilized resorbable circuit for measuring intracranial pressure

Existing Solutions: Pedicle Screw Mechanical Attachment

No current solution

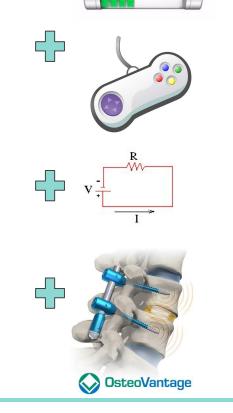
SmartStim Design Specifications

Design Specification	Metric		
Current Output	5-200µA		
Size	no larger than existing hardwire model		
Lifetime of Power Supply and Circuitry	3-6 months		
Addressability	wireless on/off, impedance check, and amplitude adjustme		
Attachment	secured safely to existing OsteoVantage pedicle screw		
Cost	no limit specified by client		
Safety	biocompatible and resorbable materials, emergency addressable on/off mechanism, leak current <1µA		

Team Organization and Roles

Microcontroller	All	
Steady current output circuit	Natalie N.	Natalie O.
Power solution	Natalie N.	Nathan
Mechanical attachment	Natalie O.	Nathan

R


Product Timeline

	Oct. 1-7	Oct. 8-14	Oct. 15-21	Oct. 22 - Nov. 4	Nov. 5 - Dec. 2	Dec. 3-9
Preliminary Report Due					1.0000000000000000000000000000000000000	
Preliminary Report presentations						
Create web page						
Progress Report Due						
Conceptual research and learning						20
Design multiple potential solutions for each aspect						
	Dec. 10-16	Jan. 14- Feb. 24	Feb. 25 - Mar. 3	Mar. 4-10	Mar. 11 - Apr. 21	Apr. 22-28
Progress Report Presentations						
Verification Validation Report Due						
Verification Validation presentations						
Completed Prototype						
Prototyping	2	-				

Summary

 SmartStim goal: decrease pseudarthrosis occurrences and severity

- SmartStim scope: 3 novel elements attached to pre-existing OsteoVantage screw
 - Prototype delivery April 23, 2018

Questions?

SmartStim

References

1. Coric, Domagoj, et al. "Journal of Neurosurgery." Revision of Anterior Cervical Pseudarthrosis with Anterior Allograft Fusion and Plating | Journal of Neurosurgery, Vol 86, No 6, June 1997, thejns.org/doi/abs/10.3171/jns.1997.86.6.0969.

2.Lee, et al. "Lumbar Pseudarthrosis: Diagnosis and Treatment." Seminars in Spine Surgery, W.B. Saunders, Dec. 2011,

www.sciencedirect.com/science/article/pii/S1040738311000542.

3. Tzioupis, Charles, and Peter Giannoudis. "Prevalence of Long-Bone Non-Unions." Elsevier, Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, UK, 2007.

4. Kanakaris, and Giannoudis. "The Health Economics of the Treatment of Long-Bone Non-Unions." Elsevier, Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, UK, 2007.

5. Pakzaban, Peyman. "Spinal Instability and Spinal Fusion Surgery." Background, History of the Procedure, Problem, MedScape, Jan. 2016,

emedicine.medscape.com/article/1343720-overview#a7.

6. Louie, Philip K., et al. "Epidemiologic Trends in the Utilization, Demographics, and Cost of Bone Morphogenetic Protein in Spinal Fusions." Current Reviews in Musculoskeletal Medicine, Springer US, Sept. 2014,www.ncbi.nlm.nih.gov/pmc/articles/PMC4596158/.

7.MacEwan, Matthew. 4 Sept. 2017.

8.Khalifeh, et al. Electrical Stimulation of Bone Healing: A Review of Current Technology and Clinical Applications. Unpublished Draft.

9. Cowan, Mark W., Richard E. Riley, Axel F. Brisken, and Debra S. Echt. Systems and Methods for Implantable Leadless Tissue Stimulation. EBR Systems, In

c., assignee. Patent US9452286b2. 20 June 2013. Print.

10. Kang, Seung-Kyun, et al. "Bioresorbable silicon electronic sensors for the brain." Nature530.7588 (2016): 71-76.

11.Patel, Prachi. "Dissolvable Batteries Made of Silk."CEN RSS. N.p., n.d. Web. 05 Oct.2017.

12. Tsang, Melissa, Andac Armutlulu, Adam W. Martinez, Sue Ann Bidstrup Allen, and Mark G. Allen. "Biodegradable Magnesium/iron Batteries with Polycaprolactone Encapsulation: A Microfabricated Power Source for Transient Implantable Devices." Nature News. Nature Publishing Group, 12 Oct. 2015. Web. 05 Oct. 2017.

13.Shatz, David. "Wireless Power For Medical Devices." MDDI Online. N.p., 07 Aug. 2017. Web. 05 Oct. 2017.

14.Zellmer, Erik, Matthew MacEwan, and Daniel Moran. Implantable Wireless System for Multi-channel, Electrical Stimulation through High Impedance Neural Interfaces. Unpublished Draft. .

Figure References

- 1. "Spinal Fusion Surgery in India." Spinal Fusion Surgery in India at Low Cost |IndiCure, www.indicure.com/spine-surgery/spinal_fusion_surgery.htm.
- Taylor, Rod S, and Rebecca J Taylor. "The Economic Impact of Failed Back Surgery Syndrome." *British Journal of Pain*, SAGE Publications, Nov. 2012, <u>www.ncbi.nlm.nih.gov/pmc/articles/PMC4590097/</u>.
- 3. MCRC: Epidemiology of Spinal Surgery Comparative Effectiveness, Cost and Outcomes Research Center University of Washington, depts.washington.edu/ccor/studies/SpineSurgEpi.shtml.
- 4. Khalifeh, et al. Electrical Stimulation of Bone Healing: A Review of Current Technology and Clinical Applications. Unpublished Draft.
- 5. "Battery Charge and Discharge Loopable 3D Animation Motion Background VideoBlocks." *Motion Background VideoBlocks*, www.videoblocks.com/video/battery-charge-and-discharge-loopable-3d-animation-rh1dh57gwj2mawxfr/.
- 6. EquityNet. "OsteoVantage, Inc." EquityNet, <u>www.equitynet.com/c/osteovantage-inc</u>.
- 7. Satoafaiga, Marina. "This Saturday, Aug. 23: Interactive Animation Workshop for Teens." *Maui Time*, 17 Aug. 2014, mauitime.com/entertainment/this-saturday-aug-23-interactive-animation-workshop-for-teens/.
- 8. "I, Circuit Board." Ricochet, ricochet.com/archives/i-circuit-board/.
- 9. Louie, Philip K., et al. "Epidemiologic Trends in the Utilization, Demographics, and Cost of Bone Morphogenetic Protein in Spinal Fusions." Current Reviews in Musculoskeletal Medicine, Springer US, Sept. 2014,www.ncbi.nlm.nih.gov/pmc/articles/PMC4596158/.
- 10. Cowan, Mark W., Richard E. Riley, Axel F. Brisken, and Debra S. Echt. Systems and Methods for Implantable Leadless Tissue Stimulation. EBR Systems, Inc., assignee. Patent US9452286b2. 20 June 2013. Print.
- 11. Patel, Prachi. "Dissolvable Batteries Made of Silk."CEN RSS. N.p., n.d. Web. 05 Oct.2017.
- 12. Minimal Invasive." Laterna Medical Technologies, www.lanternamedtech.com/pages/bakery/santistrade-umlhybriduml-pedicle-screw-system-2.php.
- 13. "Pedicle Screw, Pedicle Screw Products, Pedicle Screw Suppliers and Manufacturers at TradeKorea.com." *TradeKorea.com*, www.tradekorea.com/products/pedicle_screw.html.