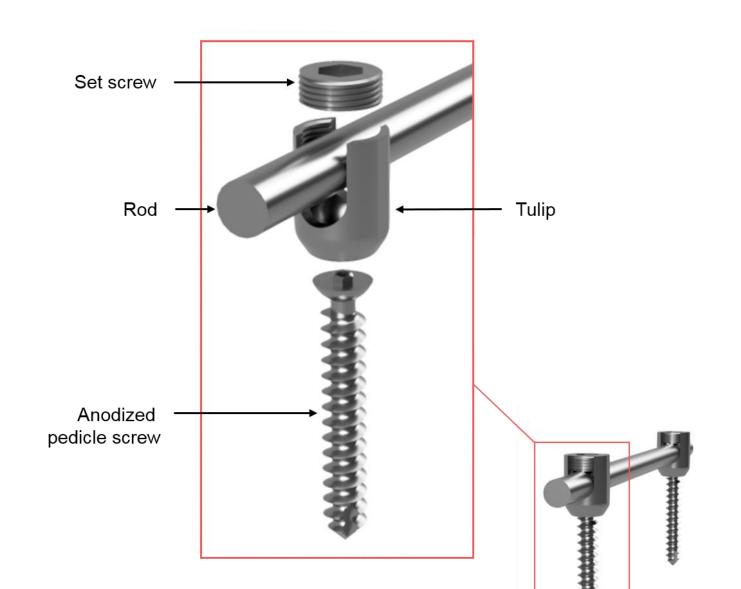
SmartStim: Progress Report

TEAM 14: NATALIE NG, NATALIE ORR, NATHAN SCHMETTER

SmartStim Overview

Client Why is it needed? What does it do? **<u>Client:</u>** Dr. Matthew MacEwan, OsteoVantage


<u>Need Statement:</u> There is a need for the development of a subcutaneous device to safely decrease instances of **pseudarthrosis** in patients of bone fusion surgeries.

What it does:

SmartStim Overview

The components of the existing mechanical system

SmartStim Overview

Surgical implementation of the mechanical system

Changes to Preliminary Report

- Design specifications
- Design schedule
- Team responsibilities

Design Specification	Metric
Addressability	Wireless on/off, impedance check, & amplitude adjustment
Attachment	Secured safely to existing OsteoVantage pedicle screw with
Addenment	minimal number of expose wires
Cost of R&D	< \$500
Current Output	5 – 200µA
Ease of Use for Surgeon	Adds < 5 minutes and minimal difficulty to existing procedure
Lifetime	> 6 months
Patient Compliance	No pain or discomfort, requires charging with a maximum
	frequency of weekly
Reproducibility	Can be produced and utilized for a wide variety of patients;
Тергосистынту	minimal dependence on size or spacing of vertebrae.
Safety	Biocompatible and/or resorbable materials, emergency on/off
Salety	mechanism, < 1µA leak current
Size	No larger than existing model used in rat studies
Transience*	Should not resorb in less than 12 months, but should fully
Tansience	resorb within 24-36 months

- Altered specification
- New specification

Changes to Preliminary Report

- Design specifications
- Design schedule
- Team responsibilities

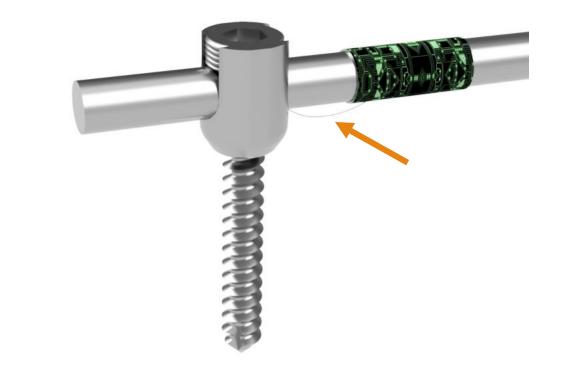
Design Schedule: Complete circuit prototyping by the end of February to allow 4-6 weeks for minitiurization / speciality fabrication and subsequent animal studies.

Team Responsbilities:

- Less strict division of labor \rightarrow shared responsibilities
- Nathan has taken lead role on lead role of client communication

Shared	Natalie N.	Natalie O.	Nathan
 Weekly logs Website maintenance Mechanical attachment design 	 Progress presentation Power solution research and design Steady current output circuit design Electrical connection via mechanical attachment 	 Preliminary presentation Steady current output circuit design Preliminary verification & validation studies 	 Verification & Validation presentation Client communication Power solution research and design 3D modeling of mechanical attachment

Design Alternatives

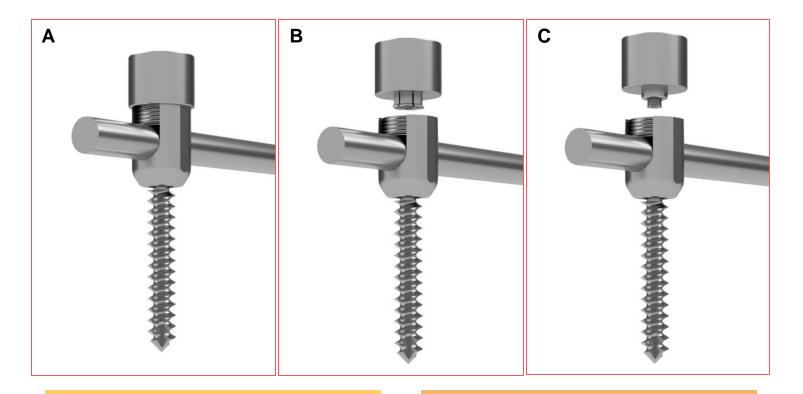

Overview

Four Main Categories of Design:

- Mechanical
- Power
 - Power transfer
- Circuit Logic
- Circuit Output

• Sleeve

- Tulip cap
- Sticker
- Rod alternatives

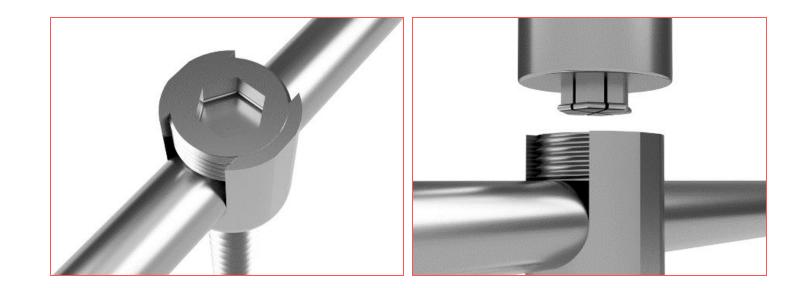


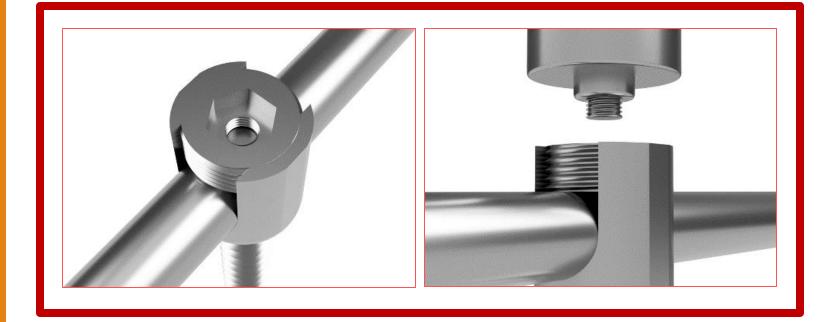
Pros:

- Uniform resorption of a transient solution
- Adjustable positioning for non-transient solutions

- Difficulty of fabrication
- Depending on position:
 - Strain on interface
 - Length of exposed wire /electrical connection
 - Minimum constraint on rod length

- Sleeve
- Tulip cap
- Sticker
- Rod alternatives

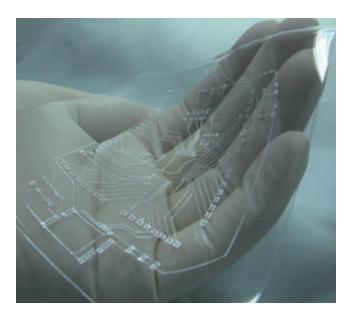



Pros:

- Mechanically secure
- Modification to existing component
- Reasonable ease of fabrication

- Engineering an electrical connection that does not inhibit polyaxial screw
- Risky for transient solutions

- Sleeve
- Tulip cap
- Sticker
- Rod alternatives


- Sleeve
- Tulip cap
- Sticker
- Rod alternatives

Pros:

- Ease of use for surgeon
- Reproducible
- Potential for both transient and non-transient solutions

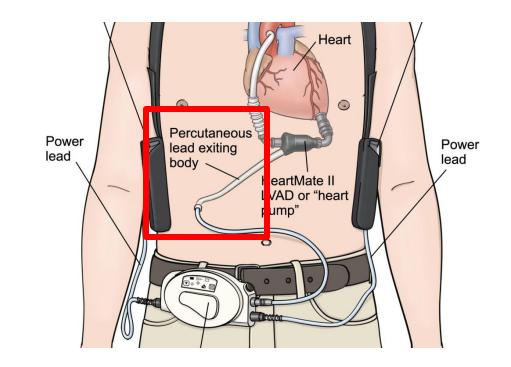
- Difficulty of fabrication
- Additional variable in the biocompatible adhesive; must last indefinitely

- Sleeve
- Tulip cap
- Sticker
- Rod alternatives

Nonconductive Ceramics:

- Alumina
- Zirconia

Polymer-Coating:


- Silicon
- Polyethylene

Properties of Nonconductive Ceramics										
	Femur	emur Cervical Lumbar Ti-6AI-4V		Zirconia	Alumina					
Compressive Strength (Mpa)	167	10	5	1070	2000	4000				
Tensile Strength (MPa)	121	3.1	3.7	960	820	69-665				
Elastic Modulus (GPa)	17.2	0.23	0.16	110	220	380				
Electrical Resistivity (Ω cm)				1.7x10 ⁻⁴	> 1x10 ¹²	> 1x10 ¹⁴				

Design Alternatives: Power

• Percutaneous wire

- Single-use battery
- Rechargeable battery
- Capacitor bank
- Constant wireless power transmission

Pros:

• Lossless power transmission

- Risk of infection
- Patient discomfort
- Additional procedure required to remove wire

Design Alternatives: Power

- Percutaneous wire
- Single-use battery
- Rechargeable battery
- Capacitor bank
- Constant wireless power transmission

Single-use Battery

Pros:

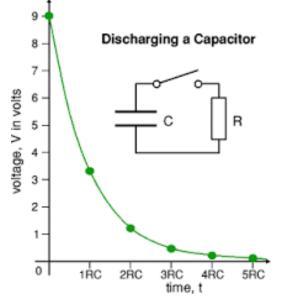
- Solution currently employed by client
- No requirement for patient compliance

Cons:

- Size is the limiting factor for miniaturizing product
- Solutions cannot be made 100% transient

Rechargeable Battery

Pros:


- Less imposing size
- Can be utilized long after initial treatment period

- Therapeutic efficacy reliant on repeated patient compliance
- Solutions cannot be made 100% transient

Design Alternatives: Power

- Percutaneous wire
- Single-use battery
- Rechargeable battery
- Capacitor bank
- Constant wireless power transmission

Rechargeable Capacitor Bank

Cons:

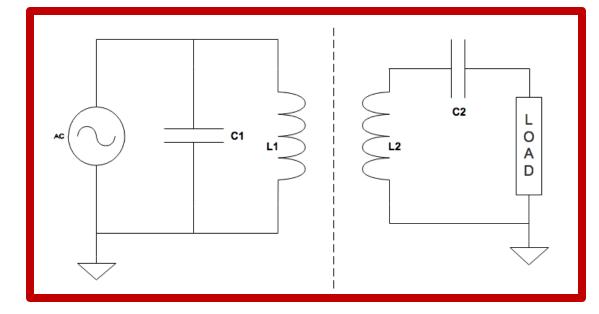
- Likely imposes on size constraints
- Exponential capacitive decay
- Therapeutic efficacy reliant on repeated patient compliance

Constant Wireless Power Transmission

Pros:

- Enables further miniaturization
- Allows for 100% transient solution

- Poor therapeutic efficacy
 - Sustained precise positioning
 - Patient compliance

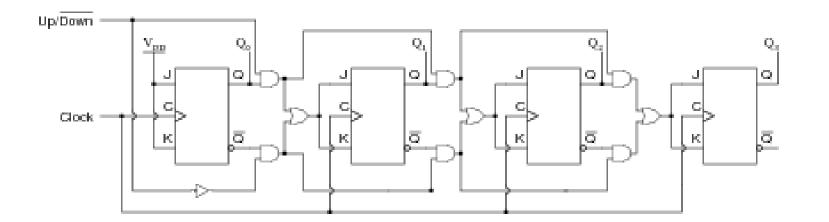

Design Alternatives: Power Transfer

- Simple induction
- High frequency resonance induction

High frequency resonance induction

Simple

induction

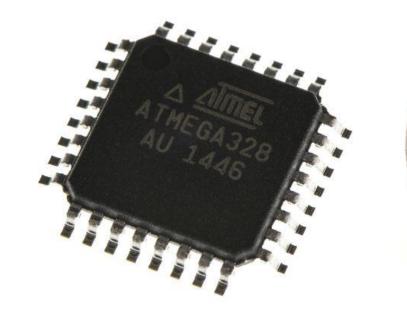


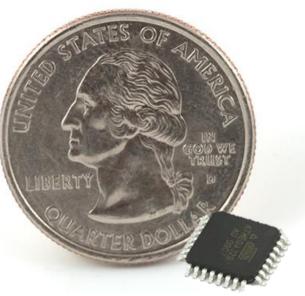
 R^{2} R^{2} R^{2} R^{3} R^{4} C^{1} C^{2} C^{2} C^{3} C^{4} C^{4

Design Alternatives: Circuit Logic

• Binary counter

• Microcontroller


Pros:


- Prior use in client's studies
- Potential for transient solution

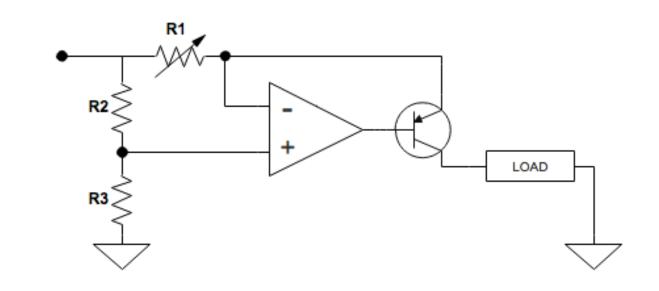
- Size
- No two-way communication
- Accuracy of current amplitude adjustment

Design Alternatives: Circuit Logic

- Binary counter
- Microcontroller

Pros:

- Enhanced addressability
- Programmable in Arduino IDE
- Capable of meeting size constraints

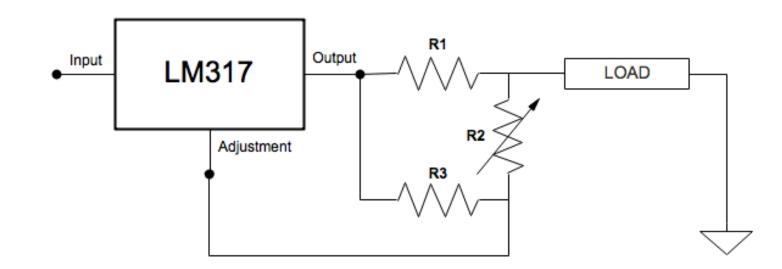

Cons:

• Solution cannot be 100% transient

Design Alternatives: Current Output

Simple transistor

Chip-controlled


Pros:

- Simple components required; low quantity
- Potential for 100% transient solution

- Less stable output
- No built in safety for temperature or current surges

Design Alternatives: Current Output

- Simple transistor
- Chip-controlled

Pros:

- Built-in over-temp & overcurrent protection
- Stable output despite variable input
- Enhanced addressability

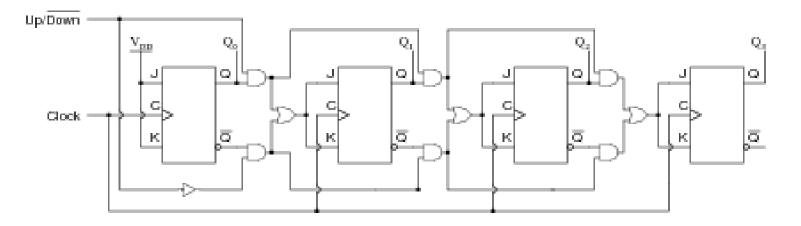
- Larger circuit
- Reliance on LM317

Design Selection: Possibilities

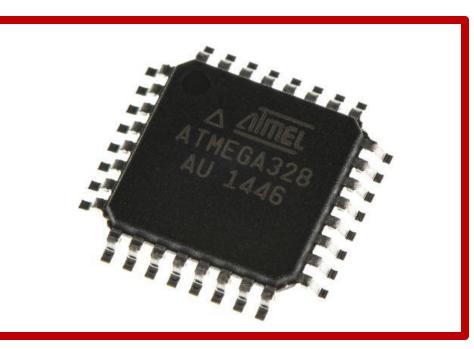
The ten design solutions to be analyzed and considered in depth

Solution	Circuitry Attachment	Logic	Power	Rod	Stimulating Circuit	Transient	
1	Tulip cap	Microcontroller	Rechargeable	Polymer-coated	Simple transistor	No	
2	Tulip cap	Microcontroller	Single-use	Polymer-coated	Simple transistor	No	
3	Tulip sticker	Microcontroller	Rechargeable	Polymer-coated	Simple transistor	No	
4	Tulip sticker	Microcontroller	Single-use	Polymer-coated	Simple transistor	No	
5	Sleeve	Microcontroller	Rechargeable	Nonconductive ceramic	Simple transistor	No	
6	Sleeve	Microcontroller	Single-use	Nonconductive ceramic	Simple transistor	No	
7	Sleeve	Binary counter	CWPT	Nonconductive ceramic	Simple transistor	Yes	
8	Tulip sticker	Binary counter	CWPT	Polymer-coated	Simple transistor	Yes	
9	Tulip cap	Microcontroller	Rechargeable	Polymer-coated	Chip- controlled	No	
10	Tulip cap	Microcontroller	Single-use	Polymer-coated	Chip- controlled	No	

Design specifications used to analyze the solutions


Criteria:

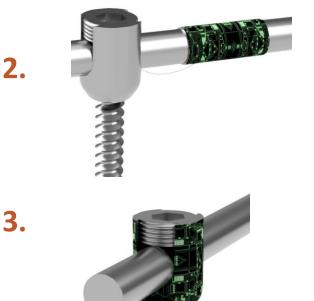
- Addressability
- Attachment
- Cost of R&D
- Current Output
- Ease of Use for Surgeon
- Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size


Addressability

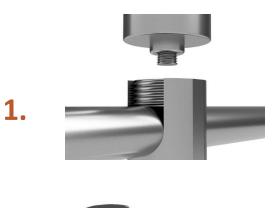
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Addressability

VS.



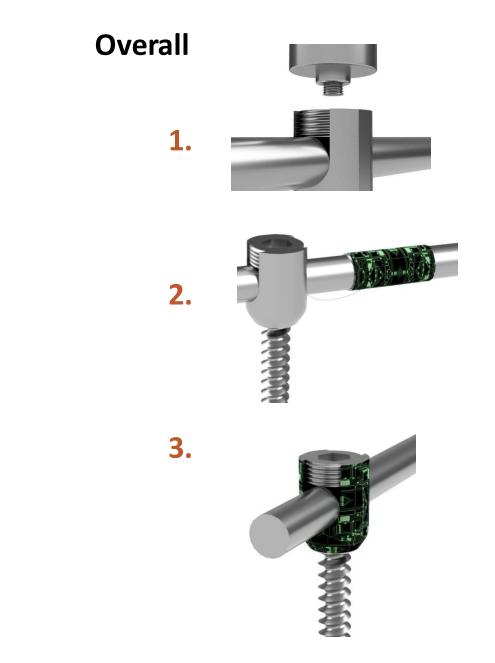
- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size


Attachment

Mechanical Stability

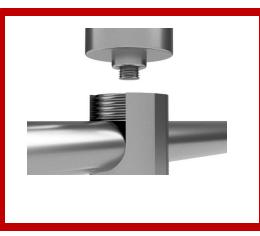


Ease of Fabrication



2.

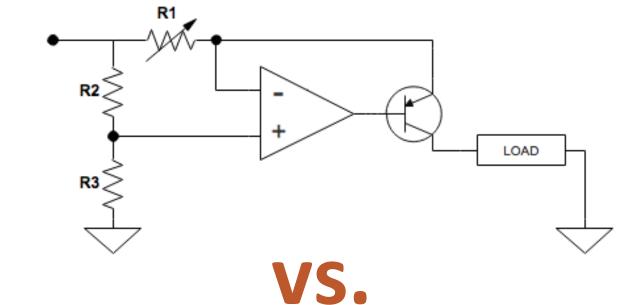
- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

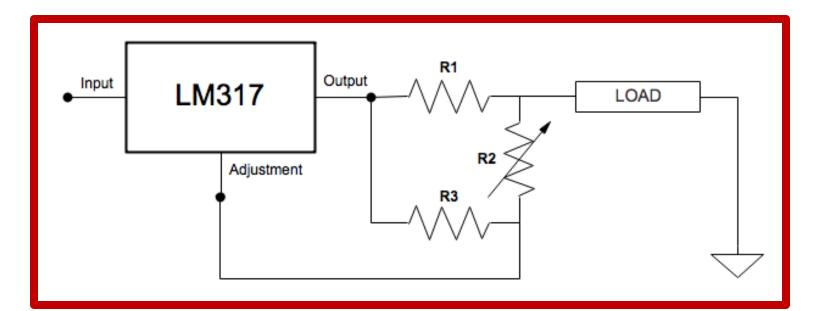

Addressability

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Cost of R&D

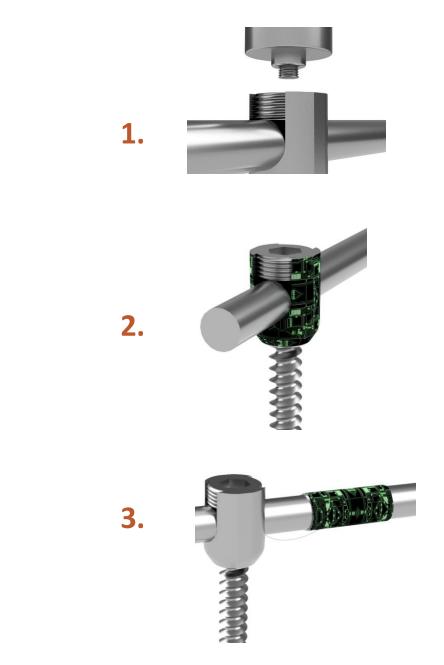
Mechanical




Power

- 1. Single-use battery
- 2. Rechargeable battery
- 3. Constant wireless power transmission

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size


Current Output

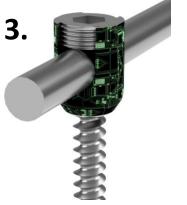
- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Ease of Use for Surgeon

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Lifetime

Material

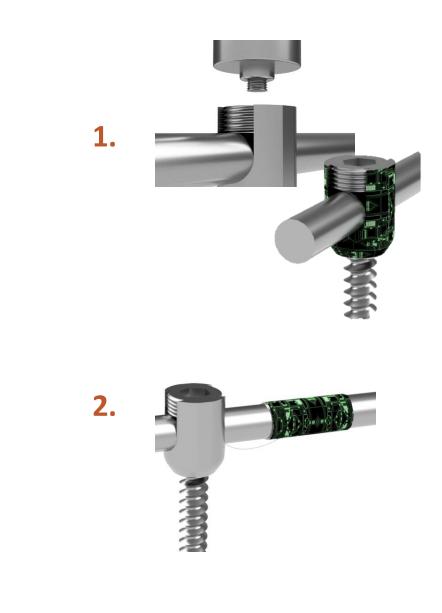

- 1. Permanent
- 2. Transient

Power

- 1. Rechargeable battery
- 2. Single-use battery
- 3. Constant wireless power transmission

Attachment

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size


Patient Compliance

Power

- 1. Single-use battery
- 2. Rechargeable battery
- 3. Constant wireless power transmission

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Reproducibility

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety
- Size

Safety

Material

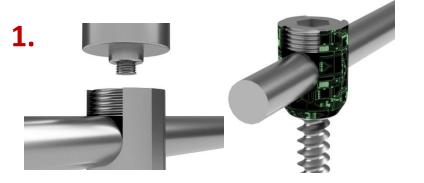
- 1. Transient
- 2. Permanent

Attachment

- Addressability
- Attachment
- Cost of R&D
- Current output
- Ease of use for surgeon
- Lifetime
- Patient compliance
- Reproducibility
- Safety

Size

Size


Circuit Logic

- 1. Microcontroller
- 2. Binary counter

Power

- 1. Constant wireless power transfer
- 2. Rechargeable battery
- 3. Single-use battery

Attachment

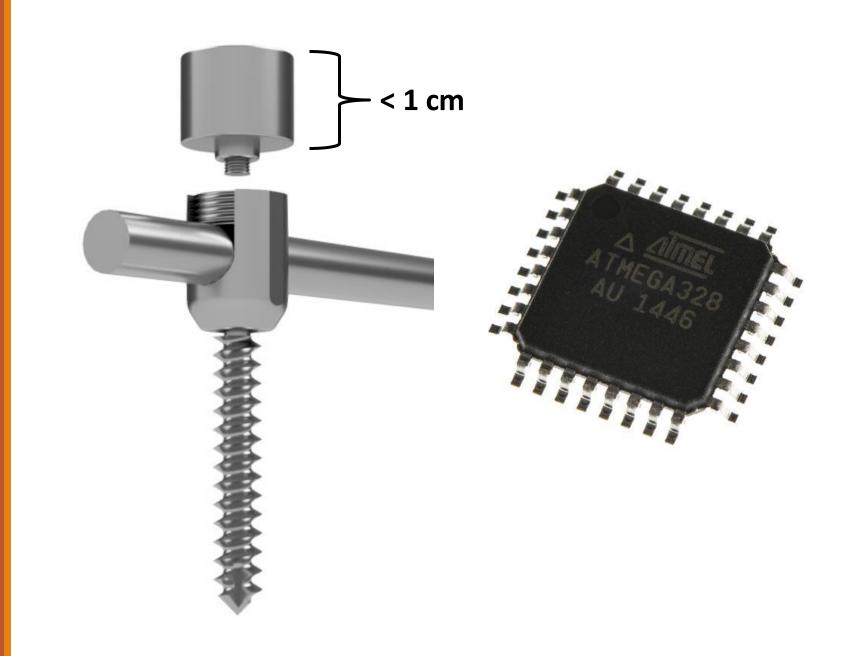


Pugh Chart											
	Importance	Solution 1	Solution 2	Solution 3	Solution 4	Solution 5	Solution 6	Solution 7	Solution 8	Solution 9	Solution 10
Current Output	10	9	9	9	9	9	9	9	9	10	10
Size	7	10	9	10	9	7	6	7	10	10	9
Lifetime	10	10	7	10	7	10	7	6	6	10	7
Addressability	8	10	10	10	10	10	10	6	6	10	10
Attachment	8	10	10	5	5	7	7	7	5	10	10
Cost of R&D	4	9	10	7	8	6	7	7	7	9	10
Safety	10	9	9	5	5	7	7	8	6	10	10
Patient Compliance	7	7	10	7	10	7	10	4	4	7	10
Ease of use for surgeon	9	10	10	10	10	6	6	6	10	10	10
Reproducibility	8	10	10	10	10	5	5	5	10	10	10
Sum		94	94	83	83	74	74	65	73	96	96
Weighted Total		765	753	677	665	612	600	533	594	785	773

Design Selection: Overview

Elaboration on what will be required for the chosen solution **Solution 9:** 1. Tulip cap

- 2. Polymer-coated rod
- 3. Microcontroller
- 4. Rechargeable battery
- 5. Chip-controlled stimulating circuit


Design Selection: Overview

Elaboration on what will be required for the chosen solution

Design Selection: Overview

Elaboration on what will be required for the chosen solution

Proposed Budget

Expected cost of prototyping

<u>Client Funded</u>: <\$500

Requested from Washington University:

Item	Quantity	Cost	Vendor
FTDI Basic Breakout	1	\$14.95	
Magnet Wire Kit	1	\$11.95	
Transistor NPN BC(337)	4	\$2.00	
LM317 Voltage Regulator	2	\$3.90	Sparkfun
Op-Amp LM358	1	\$0.95	
ATtiny85	1	\$2.84	
ATmega328P	1	\$4.30	

Total: \$40.89

Questions?

References

Special thanks to **Nathan Schmetter** for 3D models of mechanical solutions.

- Zhou, S. H. et al. "Geometrical Dimensions of The Lower Lumbar Vertebrae Analysis of Data from Digitized CT Images." *European Spine Journal* 9.3 (2000): 242-248. Web. 20 Nov. 2017.
- 2. Hodges, Steve, et al. "Circuit Stickers: Peel-and-Stick Construction of Interactive Electronic Prototypes." 2014, pp. 1743–1746. Web. 22 Nov. 2017.
- 3. Bdeir, Ayah, and Paul Rothman. "Electronics as Material: littleBits." Association for Computing Machinery. *TEI*, Feb. 2012, pp. 371-374. Web. 22 Nov. 2017.
- 4. Mellis, David, et al. "Microcontrollers as Material." 7th International Conference on Tangible, Embedded, and Embodied Interaction. Feb. 2013, pp. 83-90.
- 5. Hwang, Geon-Tae, et al. "In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers." *ACS nano* 7.5 (2013): 4545-4553.
- "Zhang, Guoyan, et al. "From Staple Food to Flexible Substrate to Electronics: Rice as a Biocompatible Precursor for Flexible Electronic Components." *Chemistry of Materials* 28.23 (2016): 8475-8479.
- Rodger, Damien C., et al. "Flexible circuit technologies for biomedical applications." *Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies*. InTech, 2013.
- 8. Wang, Qian, et al. "Fast fabrication of flexible functional circuits based on liquid metal dual-trans

printing." Advanced Materials 27.44 (2015): 7109-7116.

- 9. Observed by team member during clinical observation of arthrodesis surgery for removal of a bunion by fusing the metatarsophalangeal joint.
- 10. "Titanium Ti-6AI-4V (Grade 5), STA." *ASM Material Data Sheet*, Aerospace Specification Metals. *Asm.matweb.com*. N. p. Web. 30 Nov. 2017.

References

- 11. "Properties: Alumina Aluminium Oxide Al2o3 A Refractory Ceramic Oxide." AZO Materials. *AZoM.com.* N. p., 2017. Web. 30 Nov. 2017.
- 12. "Zirconia ZrO2, Zirconium Oxide." AZO Materials. *AZoM.com*. N. p., 2012. Web. 30 Nov. 2017.
- 13. Saini, Monika, et al. "Implant biomaterials: A comprehensive review." *World Journal of Clinical Cases: WJCC* 3.1 (2015): 52.
- 14. Katti, Kalpana S. "Biomaterials in total joint replacement." *Colloids and Surfaces B: Biointerfaces* 39.3 (2004): 133-142.
- 15. Shastri, V. Prasad. "Non-degradable biocompatible polymers in medicine: past, present and future." Current pharmaceutical biotechnology 4.5 (2003): 331-337.
- 16. Patel, Prachi. "Dissolvable Batteries Made of Silk." CEN RSS. N.p., n.d. Web. 05 Oct. 2017.
- Tsang, Melissa, et al. "Biodegradable Magnesium/Iron Batteries with Polycaprolactone Encapsulation: A Microfabricated Power Source for Transient Implantable Devices." *Nature News.* Nature Publishing Group, 12 Oct. 2015. Web. 05 Oct. 2017.
- Norstrom, Hans, and Stefan Nygren. "Capacitors in integrated circuits." U.S. Patent No. 6,100,574. 8 Aug. 2000.
- Zhang, Dongbing. "An-1484 Designing a SEPIC Converter." Texas Instruments Application Report. Revised
 2013. Web. 19 Nov. 2017.
- 20. Shatz, David. "Wireless Power For Medical Devices." MDDI Online. N.p., 07 Aug. 2017. Web. 05 Oct. 2017.
- 21. Zellmer, Erik, Matthew MacEwan, & Daniel Moran. "Implantable Wireless System for Multichannel Electrical Stimulation through High Impedance Neural Interfaces." Washington University in St. Louis. Unpublished.
- 22. Gray, Paul R., et al. Analysis and design of analog integrated circuits. Wiley, 2001.
- 23. Onsemi.com. N. p., 2017. Web. 1 Dec. 2017.
- 24. Bock, David C., et al. "Batteries used to power implantable biomedical devices." *Electrochimica acta* 84 (2012): 155-164.