SmartStim: Verification & Validation

TEAM 14: NATALIE NG & NATHAN SCHMETTER

SmartStim: Overview

SmartStim: Update

No changes to Need Statement

Expansion of Project Scope

- Functional Screw Cap Stimulator
- Battery Backpack
- Programming Wand
- Natalie Orr graduated

Addressability

- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- Can we remotely set and adjust the output current within 15 seconds?
- Can the entire system be shut down or rebooted within 15 seconds?

Diagnostic Software

- Can a full diagnostic be printed out in less than one minute?
 - Screw ID
 - Stimulation amplitude
 - Battery charge
 - Circuit impedance

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

Qualitative verification

- Will primarily experience compressive forces
- Torsional forces will be undirected
 - Impeded by smooth surface
 - Static friction

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- $^{\circ}$ Available range: 10 200 μA
- Maximum allowable overshoot: 2.5%
 - \circ 5 μ A at maximum output
 - Variance of 5 μA or less has no discernable effect on efficacy or safety
- \circ Fluctuation < [3 μ A]
- Tested with DMM4050 recording

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- Required steps
 - Mechanical installation
 - Electrical connection
 - Circuit initialization
- Installation of SmartStim < 5 minutes
 < 75 seconds per device
- In-house testing of graphic user interface

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

Lifetime > 6 months

- Record cyclic decay of the Li-Ion battery using DMM4050
 - Postulate limit to number of battery cycles

• Battery Cycles > 24

• Maximum charging frequency of once per week

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- Time to charge
 - Backpack < 3 hours
 - Implants < 2 hours
- 1 backpack charge = 4 implant charges
- On a single charge, implant can function for at least one week at maximum output

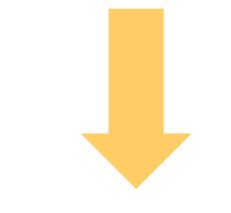
• Comfort

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- Minimal dependence on vertebrae size and/or spacing
- Test attachment in various orientations
- Are Patient Compliance specifications met for each vertebral geometry?
 - ° <2 hours to charge implants
 </p>

- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

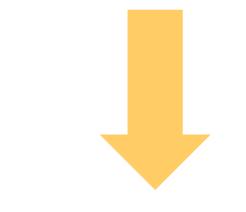
- Materials used are already approved for medical implantation
- $^\circ$ Take current measurements to verify that leak current is less than 1 μA
 - Especially during charging
- Testing internal safety mechanisms
 - Shut down if temperature > 39.5 °C
 - Buffer before damage at 43.5°C
 - \circ Shut down if output current > 200 μA


- Addressability
- Mechanical Attachment
- Current Output
- Ease of Use for Surgeon
- Product Lifetime
- Patient Compliance
- Reproducibility
- Safety
- Size/Cost

- No larger than existing model used in rat studies
- Internal circuitry can be manufactured to fit within the mechanical design
- Total costs of manufacturing < \$500

Obstacles

- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation

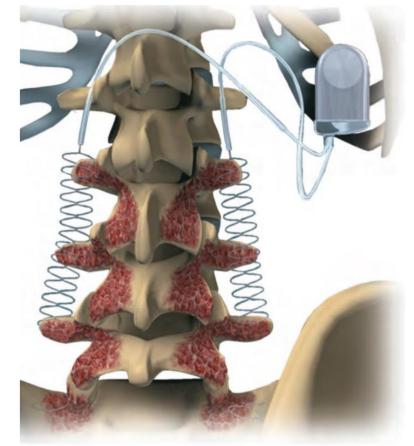

Does the product reduce instances of Pseudarthrosis?

Can the product steadily output current at amplitudes found effective in literature?

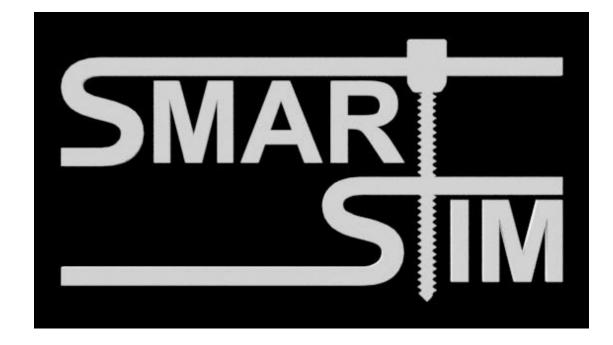
- Obstacles
- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation

Concerted effort to maintain communications

Evolving Design


Continuous Validation Process

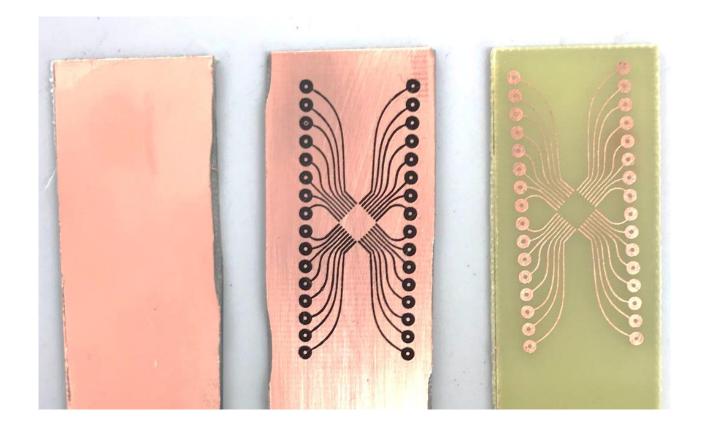
- Obstacles
- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation

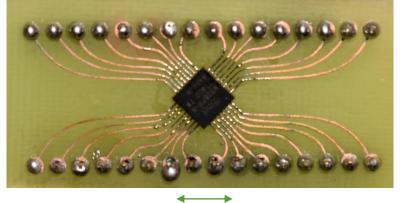

- *Ease of Use for Surgeon* is highly valued by our client
- Conduct usability testing
 - Dr. MacEwan
 - OsteoVantage members
- Feedback
 - How intuitive and robust is the GUI?
 - Are there unnecessary steps?
 - Are there missing functionalities?

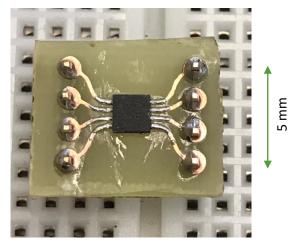
- Obstacles
- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation

- Obstacles
- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation

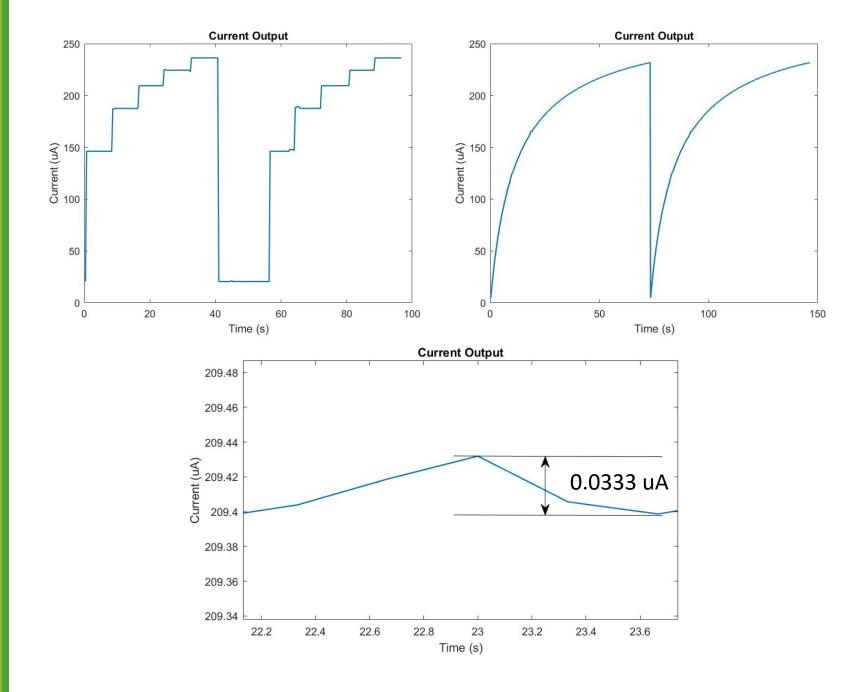
More flexibility

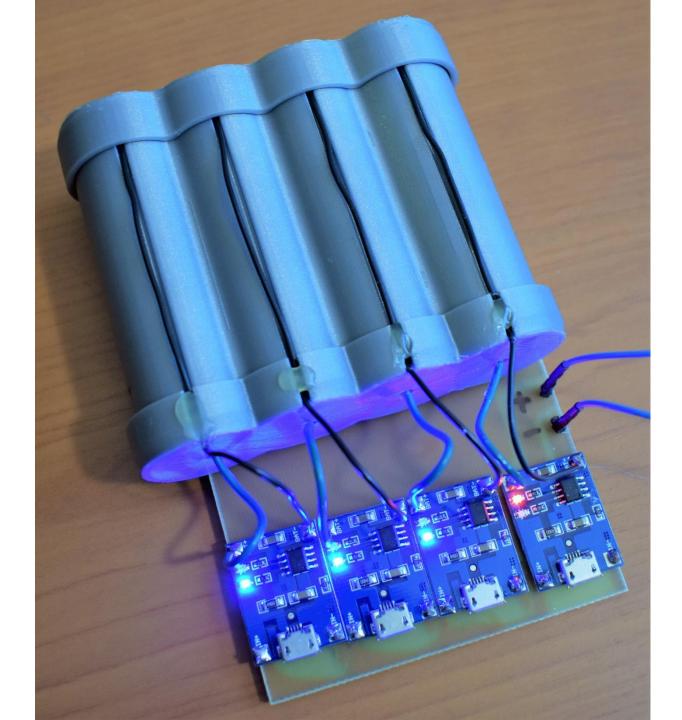

Does not require second surgery for removal

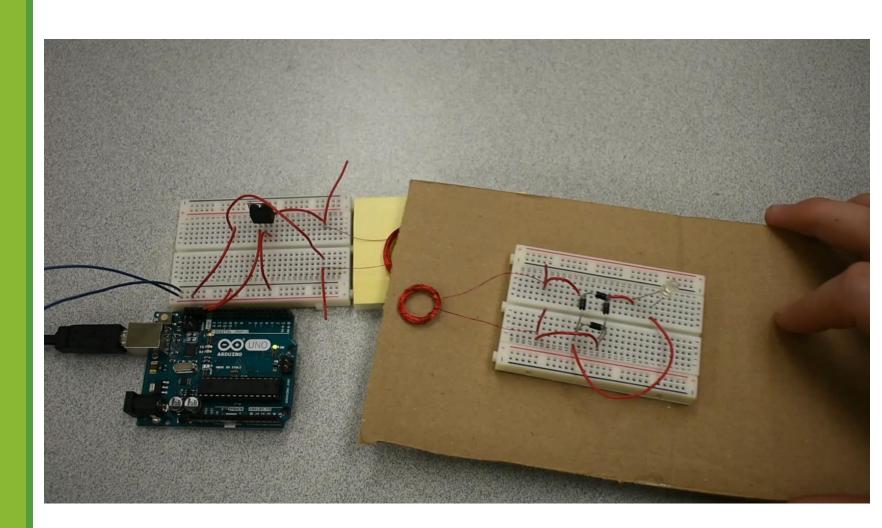

- Obstacles
- Client Interactions
- Graphic User Interface Testing
- Competitor
 Comparison
- In Vivo Validation


Working Scale Model

- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack
 Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface




- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface


- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface

- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface

- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface

- Full Scale Components
- 500x Scale Model
- Adjustable Current Output Circuit
- Battery Backpack
 Charging Circuit
- Wireless Screw Charging Circuit
- Fully Functioning Graphic User Interface

SmartStim: Status

° Completion by May 2018 deadline

• Next steps

- Integrate RF transceivers into SmartStim system
 - Screw cap stimulation circuit
 - Battery backpack
 - Programming wand
- Control output stimulation circuit from ATMega328PB
- Fully assemble scale model with complete functionality

References

[1] MacEwan, Matthew R., et al. "Novel spinal instrumentation to enhance osteogenesis and fusion: a preliminary study." Journal of Neurosurgery: Spine 25.3 (2016): 318-327.

[2] Chen, Min, and Gabriel A. Rincon-Mora. "Accurate electrical battery model capable of predicting runtime and IV performance." IEEE transactions on energy conversion 21.2 (2006): 504-511.

[3] Dewhirst, Mark, et al. "Thermal dose requirement for tissue effect: experimental and clinical findings." Thermal Treatment of Tissue: Energy Delivery and Assessment II. Vol. 4954. International Society for Optics and Photonics, 2003.

[4] Khalifeh, Jawad M., et al. "Electrical Stimulation and Bone Healing: A Review of Current Technology and Clinical Applications." IEEE Reviews in Biomedical Engineering (2018).

[5] U.S. Food & Drug Administration. "Zimmer Biomet Recalls ImplantableSpinal Fusion Stimulators Due to Potential of Harmful Chemicals Which May BeToxic to Tissues and Organs." Center for Devices and Radiological Health. Web.1 March, 2018.